FINAL: ALGEBRA I

Date: 15th November 2017

The Total points is 112 and the maximum you can score is 100 points.

A ring would mean a commutative ring with identity.

- (1) (8+8+8+8=32 points) Mention all the options which are correct. No justification needed.
 - (a) The following are isomorphic:
 - (i) $(\mathbb{R}^*, \cdot), \mathbb{C}^*, \cdot)$ as groups.
 - (ii) $(\mathbb{R}, +)$, $(\mathbb{R}^{>0}, \cdot)$ as groups.
 - (iii) $GL_n(\mathbb{F}_2)$ and $SL_n(\mathbb{F}_2)$ as groups.
 - (b) The composition factors of a finite nontrivial solvable group are:
 - (i) cyclic groups
 - (ii) simple groups
 - (iii) Alternating groups
 - (iv) cyclic groups of prime orders
 - (c) The number of groups of order 35 up to isomorphism are:
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) 3
 - (d) Let G be a finite group, H be a subgroup and P a Sylow p-subgroup of G for a prime number p. Then
 - (i) $H \cap P$ is a Sylow *p*-subgroup of *H*.
 - (ii) $H \cap P$ is a Sylow *p*-subgroup of *H* if *P* is a normal subgroup.
 - (iii) None of the above.
- (2) (5+15=20 points) What is meant by a group G acts on a set S. Let n be a composite number and G be a group of order n such that G contains a subgroup of order k for every k which divides n. Show that G is not simple.
- (3) (5+15=20 points) Define alternating group and simple group. Let p be an odd prime and $n \ge p$. Show that the alternating group A_n is generated by p-cycles.
- (4) (5+15=20 points) Let R be a ring. Define flat R-module. Let A be a flat R-algebra and M be a flat A-module. Show that M is a flat R-module.
- (5) (15+5=20 points) Let R be a subring of $\mathbb{C}[t]$ containing \mathbb{C} . Let $f(t) \in R$ be of degree $n \geq 1$. Show that $\mathbb{C}[t]$ as an R-module is generated by n elements. Is $\mathbb{C}[[t]]$ a finitely generated $\mathbb{C}[t]$ -module?